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Example from Physics: 
Measurements of Speed of Light 

Why the discrepancy between pre-1945 and post-1945 values?  
Probably due to biases and sloppy experimental methods. 



Example from Psychology:  
The “Blank Slate” 

The “blank slate” paradigm (1920-1980): 
  The human mind at birth is a “blank slate.” 
  Heredity and biology play no significant role in human psychology – all 

personality and behavioral traits are socially constructed. 

Current consensus, based on latest research: 
  Humans at birth universally possess sophisticated facilities for language 

acquisition, pattern recognition and social life. 
  Heredity, evolution and biology are major factors in human personality. 
  Some personality traits are as much as 70% heritable. 

How did the early 20th century scientists get it so wrong? 
  Sloppy experimental methodology and analysis. 
  Pervasive “politically correct” biases and wishful thinking. 
Ref: Steven Pinker, The Blank Slate: The Modern Denial of Human Nature 



Example from Anthropology: 
The “Noble Savage” 

Anthropologists, beginning with Margaret Mead in the 1930s, taught 
that primitive societies (such as South Sea Islanders) were idyllic: 

  Virtually no violence, jealousy or warfare. 
  Happy, uninhibited – few psychological problems or “hangups.” 
Beginning in the 1980s, a new breed of anthropologists visited these 

islands and did more careful studies.  They concluded: 
  These societies typically have murder rates several times higher than 

large U.S. cities. 
  Death rates from inter-tribe warfare exceed those of warfare among 

Western nations by factors of 10 to 100. 
  Complex, jealous taboos surround sexuality, courtship and marriage. 
  Example:  Until recently, in one large island society, customs condoned 

the beating or killing of non-virgin brides and suspected adulterers. 
Why were the earlier studies so wrong?   
Answer: “Anthropological malpractice” – Pinker 



Lessons From History 

  High standards of honesty and scientific rigor must be vigilantly 
enforced within a field. 

  Rigorous peer review is essential. 
  Scientific research must be based on solid empirical data and 

careful, objective analysis of that data. 
  Scientists must be willing to provide all details of the experimental 

environment, so others can reproduce their results. 
  A “politically correct” conclusion is no excuse for poor scholarship. 
  Erudite-sounding technical terminology and fancy mathematical 

formulas are no substitutes for sound reasoning. 
  Hype has no place in the scientific enterprise. 



Semiconductor Device Modeling 
Meets Parallel Computing 

  Laws of physics no longer permit clock rates to be increased 
significantly – future performance increases will come only by 
adopting massively multi-core designs. 

  Systems used for modeling are subject to this same reality. 
  Increasingly complex models, employing advanced physics and 

high-resolution grids, require correspondingly high performance. 
  The exponentially increasing complexity and density of the 

devices being modeled require higher performance in modeling. 
Conclusion:  Device modeling is being dragged “kicking and 

screaming” into the world of highly parallel computing. 
Those vendors (and their customers) who do not adapt risk being 

left behind. 



History of Parallel Computing 

  1976-1986:  Initial research studies and demos. 
  1986-1990:  First large-scale systems deployed. 
  1990-1994:  Successes over-hyped; faults ignored.  

          Shoddy measurement methods used.  
          Questionable performance claims made. 

  1994-1998:  Numerous firms fail; agencies cut funds. 
  1998-2002:  Reassessment. 
  2002-2009:  Recovering?   
  2009:  1 Pflop/s (1015 floating-point operations per 

second) demonstrated on a large scientific computation. 
Have lessons been learned? Or slipping again into hype? 



Parallel System Performance 
Practices, circa 1993 

  Performance results on small-sized parallel systems 
were linearly scaled to full-sized systems. 
◊  Example:  8,192-CPU results were linearly scaled to 

65,536-CPU results, simply by multiplying by 8. 
◊  Rationale: “We can’t afford a full-sized system.” 
◊  Sometimes this was done without any clear disclosure 

in the paper or presentation. 



Parallel System Performance 
Practices, circa 1993 

  Highly tuned programs were compared with 
untuned implementations on other systems. 
◊  In comparisons with vector systems, often little or 

no effort was made to tune the vector code. 
◊  This was the case even for comparisons with 

SIMD parallel systems – here the SIMD code can 
be directly converted to efficient vector code. 



Parallel System Performance 
Practices, circa 1993 

  Inefficient algorithms were employed, requiring 
many more operations, in order to exhibit an 
artificially high Mflop/s rate. 
◊  Some scientists employed explicit PDE schemes 

for applications where implicit schemes were known 
to be much better. 

◊  One paper described doing a discrete Fourier 
transform by direct computation, rather than by 
using an FFT (8n2 operations rather than 5n log2n). 



Parallel System Performance 
Practices, circa 1993 

  Performance rates on 32-bit floating-point data on 
one system were compared with rates on 64-bit 
data on other systems. 
◊  Using 32-bit data instead of 64-bit data effectively 

doubles data bandwidth, thus yielding artificially 
high performance rates. 

◊  Some computations can be done safely with 32-bit 
floating-point arithmetic, but many (most?) cannot. 

◊  In some emerging applications, even 64-bit floating-
point arithmetic is not enough – 128-bit is required. 



Parallel System Performance 
Practices, circa 1993 

  In some cases, performance experiments reported in 
published results were not actually performed. 
◊  Abstract of published paper:   

 “The current Connection Machine implementation runs at 300-800 
Mflop/s on a full [64K] CM-2, or at the speed of a single processor of 
a Cray-2 on 1/4 of a CM-2.” 

◊  Buried in text: 
 “This computation requires 568 iterations (taking 272 seconds) on a 
16K Connection Machine.” 

 In other words, the computation was not run on a full 64K CM-2. 
 “In contrast, a Convex C210 requires 909 seconds to compute this 
example.  Experience indicates that for a wide range of problems, a 
C210 is about 1/4 the speed of a single processor Cray-2, …” 

 I.e., the computation was not run on a Cray-2 – it was run on a 
Convex system, and a highly questionable scaling factor was used. 



Parallel System Performance 
Practices, circa 1993 

  Scientists were just as guilty as commercial 
vendors of questionable performance claims. 
◊  The examples in my files were mostly written by 

professional scientists and published in peer-
reviewed journals and conference proceedings. 

◊  One example is from an award-winning paper. 
◊  Scientists in some cases accepted free computer 

time or research funds from vendors, but did not 
disclose this fact in their papers. 

Scientists should be held to a higher standard than 
vendor marketing personnel. 



Performance Plot A 
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Data for Plot A 

Total    Parallel system  Vector system 
Objects   Run time   Run time 
    20        8:18        0:16 
    40        9:11        0:26 
    80      11:59        0:57 
  160      15:07        2:11 
  990      21:32      19:00 
9600      31:36   3:11:50* 

Notes:   
  In last entry, the 3:11:50 figure is an “estimate.” 
  The vector system code is “not optimized.” 
  The vector system performance is better except for the last 

(estimated) entry.  



Performance Plot B 
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Facts for Plot B 

  32-bit performance rates on a parallel system are 
compared with 64-bit performance on a vector system. 

  Parallel system results are linearly extrapolated to a full-
sized system from a small system (only 1/8 size).   

  The vector version of code is “unvectorized.” 
  The vector system “curves” are straight lines – i.e., they 

are linear extrapolations from a single data point.   

Summary: 
 It appears that of all points on four curves in this plot, at 
most four points represent real timings. 



Twelve Ways to Fool the Masses 

1.  Quote only 32-bit performance results, not 64-bit results. 
2.  Present performance figures for an inner kernel, and then represent these figures 

as the performance of the entire application. 
3.  Quietly employ assembly code and other low-level language constructs. 
4.  Scale up the problem size with the number of processors, but omit any mention of 

this fact. 
5.  Quote performance results projected to a full system. 
6.  Compare your results against scalar, unoptimized code on conventional systems. 
7.  When direct run time comparisons are required, compare with an old code on an 

obsolete system. 
8.  If Mflop/s rates must be quoted, base the operation count on the parallel 

implementation, not on the best sequential implementation. 
9.  Quote performance in terms of processor utilization, parallel speedups or Mflop/s 

per dollar. 
10.  Mutilate the algorithm used in the parallel implementation to match the 

architecture. 
11.  Measure parallel run times on a dedicated system, but measure conventional run 

times in a busy environment. 
12.  If all else fails, show pretty pictures and animated videos, and don't talk about 

performance. 



Twelve Ways: Basic Principles 

  Use well-understood, community-defined metrics. 
  Base performance rates on operation counts derived from the 

best practical serial algorithms, not on schemes chosen just to 
exhibit artificially high Mflop/s rates on a particular system. 

  Use comparable levels of tuning. 
  Provide full details of experimental environment, so that 

performance results can be reproduced by others. 
  Disclose any details that might affect an objective 

interpretation of the results. 
  Honesty and reproducibility should characterize all work. 

Danger:  We can fool ourselves, as well as others. 



New York Times, 22 Sept 1991 



Excerpts from NYT Article 

“Rival supercomputer and work station 
manufacturers are prone to hype, choosing the 
performance figures that make their own systems 
look better.” 

“It’s not really to the point of widespread fraud, but if 
people aren’t somewhat more circumspect, it 
could give the field a bad name.” 



Fast Forward to 2009:  
Five New Ways to Fool the Masses 

  Dozens of runs are made, but only the best performance 
figure is cited in the paper. 

  Runs are made on part of an otherwise idle system, but 
this is not disclosed in the paper. 

  Performance rates are cited for a run with only one CPU 
active per node. 

  Special hardware, operating system or compiler settings 
are used that are not appropriate for real-world usage. 

  “Scalability” is defined as a successful execution on a 
large number of CPUs, regardless of performance. 



The Role of Good Benchmarks in 
Combating Performance Abuse 

  Well-designed, rigorous, scalable performance 
benchmark tests help bring order to the field. 

  Well-thought-out and well-enforced “ground rules” 
are essential. 

  A rational scheme must be provided for calculating 
performance rates. 

  A well-defined test must be included to validate the 
correctness of the results. 

  A repository of results must be maintained. 

Recent example: The HPCS benchmark suite. 



Guidelines to Prevent Abuse 

1.  If results are presented for a well-known benchmark, comparative figures 
should be truly comparable, and rules should be followed. 

2.  Only actual performance results should be presented, not projections or 
extrapolations (unless very clearly disclosed and justified). 

3.  Performance figures should be based on comparable tuning. 
4.  Direct comparisons of run times are preferred to Mflop/s rates, etc. 
5.  Mflop/s or Gflop/s rates should be computed from consistent operation counts, 

preferably based on the best available serial algorithms. 
6.  If speedup figures are presented, the single processor rate on which they are 

based should be based on an efficient implementation. 
7.  Any ancillary information that would affect the interpretation of the results 

should be fully disclosed (e.g., 32-bit data vs 64-bit data, etc.). 
8.  Special care should be taken for figures and graphs. 
9.  Whenever possible, full background information should be provided: hardware 

and software configuration; language; algorithms; datatypes; tuning; timing 
method; basis for operation counts and speedup figures; etc. 


